首页> 外文OA文献 >Low-Voltage Analog-to-Digital Converters and Mixed-Signal Interfaces
【2h】

Low-Voltage Analog-to-Digital Converters and Mixed-Signal Interfaces

机译:低压模数转换器和混合信号接口

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Analog-to-digital converters (ADCs) are crucial blocks which form the interface between the physical world and the digital domain. ADCs are indispensable in numerous applications such as wireless sensor networks (WSNs), wireless/wireline communication receivers and data acquisition systems. To achieve long-term, autonomous operation for WSNs, the nodes are powered by harvesting energy from ambient sources such as solar energy, vibrational energy etc. Since the signal frequencies in these distributed WSNs are often low, ultra-low-power ADCs with low sampling rates are required. The advent of new wireless standards with ever-increasing data rates and bandwidth necessitates ADCs capable of meeting the demands. Wireless standards such as GSM, GPRS, LTE and WLAN require ADCs with several tens of MS/s speed and moderate resolution (8-10 bits). Since these ADCs are incorporated into battery-powered portable devices such as cellphones and tablets, low power consumption for the ADCs is essential. The first contribution is an ultra-low-power 8-bit, 1 kS/s successive approximation register (SAR) ADC that has been designed and fabricated in a 65-nm CMOS process. The target application for the ADC is an autonomously-powered soil-moisture sensor node. At VDD = 0.4 V, the ADC consumes 717 pW and achieves an FoM = 3.19 fJ/conv-step while meeting the targeted dynamic and static performance. The 8-bit ADC features a leakage-suppressed S/H circuit with boosted control voltage which achieves > 9-bit linearity. A binary-weighted capacitive array digital-to-analog converter (DAC) is employed with a very low, custom-designed unit capacitor of 1.9 fF. Consequently the area of the ADC and power consumption are reduced. The ADC achieves an ENOB of 7.81 bits at near-Nyquist input frequency. The core area occupied by the ADC is only 0.0126 mm2. The second contribution is a 1.2 V, 10 bit, 50 MS/s SAR ADC designed and implemented in 65 nm CMOS aimed at communication applications. For medium-to-high sampling rates, the DAC reference settling poses a speed bottleneck in charge-redistribution SAR ADCs due to the ringing associated with the parasitic inductances. Although SAR ADCs have been the subject of intense research in recent years, scant attention has been laid on the design of high-performance on-chip reference voltage buffers. The estimation of important design parameters of the buffer as well critical specifications such as power-supply sensitivity, output noise, offset, settling time and stability have been elaborated upon in this dissertation. The implemented buffer consists of a two-stage operational transconductance amplifier (OTA) combined with replica source-follower (SF) stages. The 10-bit SAR ADC utilizes split-array capacitive DACs to reduce area and power consumption. In post-layout simulation which includes the entire pad frame and associated parasitics, the ADC achieves an ENOB of 9.25 bits at a supply voltage of 1.2 V, typical process corner and sampling frequency of 50 MS/s for near-Nyquist input. Excluding the reference voltage buffer, the ADC consumes 697 μW and achieves an energy efficiency of 25 fJ/conversion-step while occupying a core area of 0.055 mm2. The third contribution comprises five disparate works involving the design of key peripheral blocks of the ADC such as reference voltage buffer and programmable gain amplifier (PGA) as well as low-voltage, multi-stage OTAs. These works are a) Design of a 1 V, fully differential OTA which satisfies the demanding specifications of a PGA for a 9-bit SAR ADC in 28 nm UTBB FDSOI CMOS. While consuming 2.9 μW, the PGA meets the various performance specifications over all process corners and a temperature range of [−20◦ C +85◦ C]. b) Since FBB in the 28 nm FDSOI process allows wide tuning of the threshold voltage and substantial boosting of the transconductance, an ultra-low-voltage fully differential OTA with VDD = 0.4 V has been designed to satisfy the comprehensive specifications of a general-purpose OTA while limiting the power consumption to 785 nW. c) Design and implementation of a power-efficient reference voltage buffer in 1.8 V, 180 nm CMOS for a 10-bit, 1 MS/s SAR ADC in an industrial fingerprint sensor SoC. d) Comparison of two previously-published frequency compensation schemes on the basis of unity-gain frequency and phase margin on a three-stage OTA designed in a 1.1 V, 40-nm CMOS process. Simulation results highlight the benefits of split-length indirect compensation over the nested Miller compensation scheme. e) Design of an analog front-end (AFE) satisfying the requirements for a capacitive body-coupled communication receiver in a 1.1 V, 40-nm CMOS process. The AFE consists of a cascade of three amplifiers followed by a Schmitt trigger and digital buffers. Each amplifier utilizes a two-stage OTA with split-length compensation.
机译:模数转换器(ADC)是至关重要的模块,它们构成了物理世界与数字域之间的接口。 ADC在许多应用中都是必不可少的,例如无线传感器网络(WSN),无线/有线通信接收器和数据采集系统。为了实现WSN的长期,自主运行,节点通过从周围环境中收集能量(例如太阳能,振动能等)来供电。由于这些分布式WSN中的信号频率通常较低,因此超低功耗ADC具有较低的需要采样率。随着数据速率和带宽不断提高的新无线标准的出现,ADC必须能够满足需求。诸如GSM,GPRS,LTE和WLAN之类的无线标准要求ADC具有数十MS / s的速度和中等分辨率(8-10位)。由于这些ADC已集成到电池供电的便携式设备(如手机和平板电脑)中,因此ADC的低功耗至关重要。第一个贡献是采用65nm CMOS工艺设计和制造的超低功耗8位,1 kS / s逐次逼近寄存器(SAR)ADC。 ADC的目标应用是自动供电的土壤水分传感器节点。在VDD = 0.4 V时,ADC消耗717 pW,达到FoM = 3.19 fJ / conv-step,同时满足目标的动态和静态性能。 8位ADC具有一个抑制泄漏的S / H电路,该电路具有增强的控制电压,可实现> 9位的线性度。采用二进制加权电容阵列数模转换器(DAC),其定制的极低单位电容为1.9 fF。因此,减小了ADC的面积和功耗。 ADC在接近奈奎斯特的输入频率下达到7.81位的ENOB。 ADC占用的核心区域仅为0.0126 mm2。第二个贡献是针对通信应用在65 nm CMOS中设计和实现的1.2 V,10位,50 MS / s SAR ADC。对于中到高采样率,由于与寄生电感相关的振铃,DAC参考建立在电荷分配SAR ADC中造成了速度瓶颈。尽管近年来SAR ADC一直是研究的重点,但高性能片上参考电压缓冲器的设计却很少受到关注。本文详细阐述了缓冲器的重要设计参数的估计以及诸如电源灵敏度,输出噪声,失调,建立时间和稳定性等关键指标。所实现的缓冲器由两级运算跨导放大器(OTA)和复制源跟随器(SF)级组成。 10位SAR ADC利用分裂阵列电容式DAC来减小面积和功耗。在包括整个焊盘框架和相关寄生因素的布局后仿真中,ADC在1.2 V的电源电压,典型的工艺拐角和接近Nyquist输入的采样频率为50 MS / s的情况下实现了9.25位的ENOB。除基准电压缓冲器外,ADC消耗697μW的能量,转换效率为25 fJ /转换步长,而核心面积仅为0.055 mm2。第三部分包括五项不同的工作,涉及ADC关键外围模块的设计,例如参考电压缓冲器和可编程增益放大器(PGA)以及低压多级OTA。这些工作是:a)设计一个1 V,全差分OTA,该器件满足28 nm UTBB FDSOI CMOS中9位SAR ADC的PGA的严格要求。 PGA的功耗为2.9μW,在所有工艺角和[−20°C + 85°C]温度范围内均满足各种性能规范。 b)由于28 nm FDSOI工艺中的FBB可以对阈值电压进行宽范围的调整,并可以大幅提高跨导,因此设计了VDD = 0.4 V的超低压全差分OTA,可以满足通用的综合规范要求-目的OTA,同时将功耗限制为785 nW。 c)针对工业指纹传感器SoC中的10位,1 MS / s SAR ADC的1.8 V,180 nm CMOS节能参考电压缓冲器的设计和实现。 d)在以1.1 V,40 nm CMOS工艺设计的三级OTA上,基于单位增益频率和相位裕度,比较了两个先前发布的频率补偿方案。仿真结果凸显了分段长度间接补偿优于嵌套米勒补偿方案的优势。 e)设计一个模拟前端(AFE),该前端可满足1.1 V,40 nm CMOS工艺中电容耦合的通信接收器的要求。 AFE由三个放大器的级联组成,后面是施密特触发器和数字缓冲器。每个放大器均采用具有分段长度补偿的两级OTA。

著录项

  • 作者

    Harikumar, Prakash;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号